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Stability Condition for the Explicit Algorithms of
the Time Domain Analysis of Maxwell’s Equations

Michal Mrozowski, Member, IEEE

Abstract— This letter presents the derivation of the stability
condition for various types of time domain algorithms used
in the solution of linear hyperbolic differential equations that
arise in the investigation of transient electromagnetic fields. The
stability condition of the algorithm is derived by investigating
the properties of operators in suitably defined Hilbert spaces.
Compared to the classical von Neumann stability analysis, the
functional analysis approach gives more general results that can
be easily applied to some recent and possible future time domain
schemes.

I. INTRODUCTION

XPLICIT ALGORITHMS for the solution of initial value

problems have recently received much attention among
researchers involved in the numerical analysis of electromag-
netic fields. Two methods belonging to this class, known as
finite difference-time domain (FDTD) and transmission line
matrix (TLM) algorithms have been developed intensively in
the last decade. Their salient feature is that electromagnetic
field is analyzed in the time domain and the samples of relevant
physical quantities at nodes located at the discrete points in
space are used to represent a physical continuum. These two
methods are constantly being improved. The improvements
include the application of graded meshes or nonorthogonal
cells, application of local approximations or extension of
the basic algorithms to the new class of materials such as
ferrites or dispersive media. Also, new concepts of space
representation of fields have been introduced.

Recognizing the progress achieved in the recent years
in the time domain analysis of electromagnetic fields, it
should be noted that the explicit algorithms underlaying these
methods are not unconditionally stable and the improvements
introduced to algorithms affect their stability. Consequently
there is a need to investigate the stability criteria for new
schemes [6], [9]. In this letter, we shall present ways that
the stability of different algorithms can be investigated using
functional analysis.

II. STABILITY ANALYSIS OF EXPLICIT
TiIME DOMAIN ALGORITHMS

Let us consider a hyperbolic differential equation
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where L is an elliptic linear differential operator. The hy-
perbolic equation of this type, supplemented by conditions
at ¢ = 0 can be solved for ¢ > 0 using a classical finite
difference explicit algorithm [2]. It is known that the explicit
algorithms are conditionally stable. The approach most fre-
quently used to derive the stability condition is known as the
von Neumann stability analysis [2], [5]. This analysis involves
local expansion of unknown functions into Fourier series and
assumes the finite difference representation of the operator. If
L is a negative Laplacian, the von Neumann approach leads
the formula known as the Courant-Friedrich-Levy condition.
The classical von Neumann analysis can also be expressed in
terms of the functional analysis [1], [9].

To investigate the stability of explicit algorithms for the
hyperbolic equations it is useful to present a problem in a
canonical form:
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The time marching algorithm for the above problem is stable
if the following conditions are fulfilled [1]:

A=A">0, R=R*>0 3)
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In other words, for the time-marching algorithm to be stable
it is sufficient that both operators A and R are self adjoint
and positive and, additionally, the operator R — 0.25A is
nonnegative. The canonical form (2) is obtained from (1) by
simply writing it as
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where 1 is the identity operator.

Comparing (5) with (2), we get R = I/At? and A = L.
It can readily be verified that operator L is symmetric and
positive. It suffices to verify the condition (4). This condition
is fulfilled when
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Thus, the maximal time step in explicit time domain algorithms
considered here depends on the norm of the operator L.
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For a self-adjoint bounded operator L defined in the Hilbert
space H the norm is defined as [3]

L[ = sup Ly, y)| = |Amac| ®)

yeH, |lyll=1

where A,,q. is the largest eigenvalue of L.

TII. STABILITY ANALYSIS FOR ONE-DIMENSIONAL PROBLEM

One important conclusion that follows from the functional
analysis approach is that the stability condition depends on
how the unknown functions are represented. This is because
the norm of the operator depends on the space it acts in. When
solving a particular problem, we choose the way the functions
are represented and the criteria to measure the accuracy of
our solution. This choice is equivalent to the choice of a
functional space and affects the norm of the operator, and
thus the stability condition. To illustrate this problem in more
detail let us consider a one dimensional problem
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where b(z) > 0 is a time independent continuous function of
z,

One possible way of solving the above problem is to use a
classical finite difference approach, but let us find the solution
by means of the method of moments. Let D denote the
domain of operator I and assume that it allows only functions
satisfying Dirichlet conditions at both ends of the interval
whose first and second derivatives are both square integrable.
By equipping the domain D with an inner product

t
(u, v) = / uv dx (11)
0
we specify it in terms of the Hilbert space.
It can easily be verified that operator
82
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is positive and self adjoint. However, if we would like to
calculate its norm in this space, we note that the operator L
is unbounded and consequently its norm is infinite. Its norm
becomes finite, however, if the operator is allowed to act in
a finite dimensional space. This is what happens in practice
because we always look for an approximate solution to the
problem using a finite number of elements to represent a
function. Let us now expand the function f(z) into series
of basis functions

@) =D efi(x) (13)
and use the inner product (11) to find the expansion coefficient
at any instance of time.

The finite set of basis function defines the approximate
finite dimensional subspace of original domain. Consider the
following truncated set of basis functions:
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(14)
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The basis functions (14) span a finite dimensional space
Hn,, C D in which the approximate solution is sought. Now
it is easy to find the upper bound of the operator.
o? o?
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where b, is the maximal absolute value of b(x) over the
interval (0, ). The eigenvalues A; of operator L,, are given
by

(15)
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and consequently the norm of L
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This leads to the condition
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If we chose an alternative way and represent the function
and the operator in a finite difference sense by specifying
their values at discrete points, the norm will be changed. If
the discretization points are equidistant and the spacing is Ad
then [1]
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yielding the Courant-Friedrich-Levy condition:
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IV. APPLICATION TO ELECTROMAGNETICS

The stability analysis described above can be used in elec-
tromagnetic problems. Here the operator L can be specified
as

! X 1 \Y
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(other definitions are also possible).

As an example, let us consider a cube {2 with the dimensions
[ x I x 1. In this region we seek an approximate solution to the
hyperbolic equation with an operator defined by (21) given a
finite number of expansion functions in the form of normalized
products of sines and cosines
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Let D denote the domain of operator L. The basis functions
(22) span a finite dimensional space Hy,, C D. We calculate
the upper bound of the norm of operator ||L]|. Note that
LI < [Ty | Where

L, = (EOMOEminNmin)_lv X V X () (23)
and
Cmin = infe”(mv Y, Z)v
Hmin = infMT(x, Y, Z) T, Yy, z € 0. 24)
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Using the same procedure as for one-dimensional case we find
the norm of operator L in Hy,,
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where Vmax = (eouoeminumin)_l/ 2 is the maximum velocity
for a plane wave in the structure. Using the above estimation
we get the following stability condition

At<—2
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If the region €) is a rectangular prism with the dimensions
a X b x [ and the upper bound for ¢, [, m in the trigonometric
expansion functions is Kz, Lz, Ny, then the condition (26)
becomes
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Discretizing the space € in the z direction with the step Ad
and using K s x Ly sine and cosine basis functions to in the
z and y directions, the stability condition derived using (19) is
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For the discretization of all three coordinates with steps
Az, Ay, Ad, we shall get the well-known Courant condition

(5]
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At this point it is interesting to observe that the derivation
described above provides stability criteria for a few recently
published time domain algorithms. For instance, (27) and (28)
are the stability criteria for the Total Eigenfunction Expansion
and Partial Eigenfunction Equations schemes derived in [8]
(for sine and cosine basis functions). In a compact 2-D/FDTD
aigorithm described in [4] and investigated subsequently by

At <
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Cangellaris [6], the functions are represented by samples
at uniformly discretized cartesian coordinates z, y and the
variation in the z direction given in the form exp (—j8z).
For this case, the functional analysis approach gives

At < ! > =
2
vmax\/(ﬁ) + (Aiy) + (g)
This condition is identical as the one given in [4] and [6]. Also,

the stability of a hybrid spectral/FDTD method introduced
recently by Cangellaris ef al. [7] follows from condition (7).

(30)

V. CONCLUSIONS

The application of the functional analysis to the investi-
gation of the stability of time domain algorithms has been
presented. It was shown that the method can easily be applied
to the investigation of the properties of novel time domain
schemes for Maxwell’s equations.
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