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Stability Condition for the Explicit Algorithms of

the Time Domain Analysis of Maxwell’s Equations
Michal Mrozowski, Member, IEEE

Abstract— This letter presents the derivation of the stability

condition for various types of time domain algorithms used

in the solution of linear hyperbolic differential equations that

arise in the investigation of transient electromagnetic fields. The

stability condition of the algorithm is derived by investigating

the properties of operators in suitably defined Hilbert spaces.

Compared to the classical von Neumann stability analysis, the
functional analysis approach gives more general results that can
be easily applied to some recent and possible future time domain
schemes.

I. INTRODUCTION

E XPLICIT ALGORITHMS for the solution of initial value

problems have recently received much attention among

researchers involved in the numerical analysis of electromag-

netic fields. Two methods belonging to this class, known as

finite difference-time domain (FDTD) and transmission line

matrix (TLM) algorithms have been developed intensively in

the last decade. Their salient feature is that electromagnetic

field is analyzed in the time domain and the samples of relevant

physical quantities at nodes located at the discrete points in

space are used to represent a physical continuum. These two

methods are constantly being improvedl. The improvements

include the application of graded meshes or nonorthogonal

cells, application of local approximations or extension of

the basic algorithms to the new class of materials such as

ferrites or dispersive media. Also, new concepts of space

representation of fields have been introduced.

Recognizing the progress achieved in the recent years

in the time domain analysis of electromagnetic fields, it

should be noted that the explicit algorithms underlaying these

methods are not unconditionally stable and the improvements

introduced to algorithms affect their stability. Consequently

there is a need to investigate the stability criteria for new

schemes [6], [9]. In this letter, we shall present ways that

the stability of different algorithms can be investigated using

functional analysis.

II. STABILITY ANALYSIS OF EXPLICIT

TIME DOMAIN ALGORITHMS

Let us consider a hyperbolic differential equation

~f+Lf=O (1)
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where L is an elliptic linear differential operator. The hy-

perbolic equation of this type, supplemented by conditions

at t = O can be solved for t > 0 using a classical finite

difference explicit algorithm [2]. It is known that the explicit

algorithms are conditionally stable. The approach most ‘fre-

quently used to derive the stability condition is known as the

von Neumann stability analysis [2], [5]. This analysis involves

local expansion of unknown functions into Fourier series and

assumes the finite difference representation of the operator. If

L is a negative Laplacian, the von Neumann approach leads

the formula known as the Courant-Friedrich-Levy condition.

The classical von Neumann analysis can also be expressed in

terms of the functional analysis [1], [9].

To investigate the stability of explicit algorithms for the

hyperbolic equations it is useful to present a problem in a

canonical form:

At2R$f + Af = O (2)

The time marching algorithm for the above problem is stable

if the following conditions are fulfilled [1]:

A= A*>O, R= R*>O (3)

R–+>0. (4)

In other words, for the time-marching algorithm to be stable

it is sufficient that both operators A and R are self adjoint

and positive and, additionally, the operator R – O.25A is

nonnegative. The canonical form (2) is obtained from (1) by

simply writing it as

Lw &
~Imf +Lf = O (5)

where I is the identity operator.

Comparing (5) with (2), we get R = I/At2 and A = L.

It can readily be verified that operator L is symmetric and

positive. It suffices to verify the condition (4). This condition

is fulfilled when

or

(6)

(7)

Thus, the maximal time step in explicit time domain algorithms

considered here depends on the norm of the operator L.
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For a self-adjoint bounded operator L defined in the Hilbert The basis functions (14) span a finite dimensional space

space ‘H the norm is defined as [3] fiIVh, C D in which the approximate solution is sought. Now

IILII = ~esu:ll=ll(Lw v)I = l~m~zl (8)
it is easy to find the upper bound of the operator.

IILII = ll~(~)~oll s ll~maz~oll = Ilkll (15)
where ~~~~ is the largest eigenvalue of L.

where bmaz is the maximal absolute value of b(z) over the
III. STABILITY ANALYSIS FOR ONE-DIMENSIONAL PROBLEM interval (O, 1). The eigenvalues ~i of operator Lm are given

one important conclusion that follows from the functional by

analysis approach is that the stability condition depends on b .2 2

how the unknown functions are represented. This is because
rnax~ ~

A, = ~2

the norm of the operator depends on the space it acts in. When

solving a particular problem, we choose the way the functions
and consequently the norm of L

are represented and the criteria to measure the accuracy of

our solution. This choice is equivalent to the choice of a
llL\l < bm”’~T2.

functional space and affects the norm of the operator, and This leads to the condition

thus the stability condition. To illustrate this problem in more n,
detail let us consider a one dimensional problem

(9)

f(z, t,)= fo(z), f(z = o) = f(x = 1) = o (lo)

where b(z) > 0 is a time independent continuous function of

x,

One possible way of solving the above problem is to use a

classical finite difference approach, but let us find the solution

by means of the method of moments. Let D denote the

domain of operator L and assume that it allows only functions

satisfying Dirichlet conditions at both ends of the interval

whose first and second derivatives are both square integrable.

By equipping the domain D with an inner product

(u, v)= J’ ‘uV Cix (11)

we specify it in terms of the Hilbert space.

It can easily be verified that operator

(12)

is positive and self adjoint. However, if we would like to

calculate its norm in this space, we note that the operator L

is unbounded and consequently its norm is infinite. Its norm

becomes finite, however, if the operator is allowed to act in

a finite dimensional space. This is what happens in practice

because we always look for an approximate solution to the

problem using a finite number of elements to represent a

function. Let us now expand the function ~(x) into series

of basis functions

(13)

and use the inner product (11) to find the expansion coefficient

at any instance of time.

The finite set of basis function defines the approximate

finite dimensional subspace of original domain. Consider the

following truncated set of basis functions:

16)

17)

If we chose an alternative way and represent the function

and the operator in a finite difference sense by specifying

their values at discrete points, the norm will be changed. If

the discretization points are equidistant and the spacing is Ad
then [1]

(19)

yielding the Courant-Friedrich-Levy condition:

At< 1
Ad&

(20)

IV. APPLICATION TO ELECTROMAGNETICS

The stability analysis described above can be used in elec-

tromagnetic problems. Here the operator L can be specified

as

(other definitions are also possible).

As an example, let us consider a cube fl with the dimensions

1 x 1 x 1. In this region we seek an approximate solution to the

hyperbolic equation with an operator defined by (21) given a

finite number of expansion functions in the form of normalized

products of sines and cosines

“c LX.(
sin 3 or cos —

1 1
i, k < NM. (22)

Let D denote the domain of operator L. The basis functions

(22) span a finite dimensional space ~NJI c D. We calculate

the upper bound of the norm of operator IIL II. Note that

IILII < llLmll. Where

Ln = (~O~Oe~infl~in)-lV X V X (.) (23)

and

[

2’
– sin z
11

i<NM (14)
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Using the same procedure as for one-dimensional case we find

the norm of operator L in ‘HNM

(25)

where v~a = (~OVO~nli.Alli.) -l/2 is the maximum velocity
for a plane wave in the structure. Using the above estimation

we get the following stability condition

At < 21
.aX~&fn~”

(26)
u

If the region O is a rectangular prism with the dimensions

a x b x 1 and the upper bound for i, 1, m in the trigonometric

expansion functions is KM, LM, NM, then the condition

becomes

At <
2

vmax7r J(%)’+ (*)2+ (*)2”

(26)

(27)

Discretizing the space C! in the .z direction with the step Ad

and using KM x LM sine and cosine basis functions to in the

z and y directions, the stability condition derived using (19) is

At <
2

‘ha. (@$Jq2 + (*)2 + (*)2”

(28)

For the discretization of all three coordinates with steps

Ax, Ay, Ad, we shall get the well-known Courant condition

[5]

‘“ ..4*+(*)2” ’29)
At this point it is interesting to observe that the derivation

described above provides stability criteria for a few recently

published time domain algorithms. For instance, (27) and (28)

are the stability criteria for the Total Eigenfunction Expansion

and Partial Eigenfunction Equations schemes derived in [8]

(for sine and cosine basis functions). In a compact 2-D/FDTD

algorithm described in [4] and investigated subsequently by

Cangellaris [6], the functions are represented by samples

at uniformly discretized cartesian coordinates x, y and the

variation in the z direction given in the form exp (–j/?.z).

For this case, the functional analysis approach gives

‘“ .max/* ’30)

This condition is identical as the one given in [4] and [6]. Also,

the stability of a hybrid spectral/FDTD method introduced

recently by Cangellaris et al. [7] follows from condition (7).

V. CONCLUSIONS

The application of the functional analysis to the investi-

gation of the stability of time domain algorithms has been

presented. It was shown that the method can easily be applied

to the investigation of the properties of novel time domain

schemes for Maxwell’s equations.
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